Answer:
(a) [tex]\omega=1.41*10^3\frac{rad}{s}[/tex]
(b) [tex]t=4.46*10^{-3}s[/tex]
Explanation:
The angular speed is a measure of the rotation speed. Thus, It is defined as the angle rotated by a unit of time:
[tex]\omega=\frac{\theta}{t}(1)[/tex]
The arc length in a circle is given by:
[tex]s=r\theta\\\theta=\frac{s}{r}(2)[/tex]
s is the length of an arc of the circle, so [tex]v=\frac{s}{t}[/tex].
Replacing (2) in (1):
[tex]\omega=\frac{s}{t}\frac{1}{r}\\\omega=\frac{v}{r}[/tex]
a) Now, we calculate the angular speed:
[tex]\omega=\frac{2.21*10^{-5}\frac{m}{s}}{1.57*10^{-8}m}\\\omega=1.41*10^3\frac{rad}{s}[/tex]
b) We use (1) to calculate the time it takes to make one revolution, which means that [tex]\theta[/tex] is [tex]2\pi[/tex].
[tex]\omega=\frac{\theta}{t}\\t=\frac{\theta}{\omega}\\t=\frac{2\pi}{1.41*10^3\frac{rad}{s}}\\t=4.46*10^{-3}s[/tex]