Some bacteria are propelled by biological motors that spin hair-like flagella. A typical bacterial motor turning at a constant angular velocity has a radius of 1.57 x 10-8 m, and a tangential speed at the rim of 2.21 x 10-5 m/s.
(a) What is the angular speed (the magnitude of the angular velocity) of this bacterial motor?
(b) How long does it take the motor to make one revolution?

Respuesta :

Answer:

(a) [tex]\omega=1.41*10^3\frac{rad}{s}[/tex]

(b) [tex]t=4.46*10^{-3}s[/tex]

Explanation:

The angular speed is a measure of the rotation speed. Thus, It is defined as the angle rotated by a unit of time:

[tex]\omega=\frac{\theta}{t}(1)[/tex]

The arc length in a circle is given by:

[tex]s=r\theta\\\theta=\frac{s}{r}(2)[/tex]

s is the length of an arc of the circle, so [tex]v=\frac{s}{t}[/tex].

Replacing (2) in (1):

[tex]\omega=\frac{s}{t}\frac{1}{r}\\\omega=\frac{v}{r}[/tex]

a) Now, we calculate the angular speed:

[tex]\omega=\frac{2.21*10^{-5}\frac{m}{s}}{1.57*10^{-8}m}\\\omega=1.41*10^3\frac{rad}{s}[/tex]

b) We use (1) to calculate the time it takes to make one revolution, which means that [tex]\theta[/tex] is [tex]2\pi[/tex].

[tex]\omega=\frac{\theta}{t}\\t=\frac{\theta}{\omega}\\t=\frac{2\pi}{1.41*10^3\frac{rad}{s}}\\t=4.46*10^{-3}s[/tex]

ACCESS MORE
EDU ACCESS