Answer:
Amount of linear movement
Explanation:
Our system is defined by the rate of change in mass that
leaves the car [tex]\Delta m_ {s}[/tex] , this happens during a time interval
[tex][t, t + \Delta t][/tex], in addition to freight car and sand at time t.
In this way we need to define the two states:
State 1,
consider [tex]t, m_ {c} (t) + \Delta m_ {s}[/tex] and V.
State 2,
consider [tex]t + \Delta t, m_ {c} (t), V + V \Delta V[/tex]
In this state is the mass of sand output, which
is composed of
[tex]\Delta m_{s}, V + \Delta V[/tex]
In this way we define the Linear movement in x, like this:
[tex]p_ {x} (t) = (\Delta m_ {s} + m_ {c} (t)) v[/tex]
[tex]p_ {x} (t+\Delta t) = (\Delta m_ {s} + m_ {c} (t)) (v + \Delta v)[/tex]
[tex]m_ {c} (t) = m_ {c, 0} - bt = m_ {c} + m_ {s} -bt[/tex]
In this way we proceed to obtain the Force
[tex]F =\lim_{\Delta t \rightarrow 0} \frac {p_x (t + \Delta t) -p_ {x} (t)} {\Delta t}[/tex]
[tex]F = lim_{\Delta t \rightarrow 0} m_ {c} (t) \frac {\Delta v} {\Delta t} + lim_{\Delta t \rightarrow 0} m_ {s} (t) \frac {\Delta v} {\Delta T}[/tex]
Since the mass of the second term becomes 0, the same term is eliminated, thus,
[tex]F = m_ {c} (t) \frac {dv} {dt}[/tex]
[tex]\int\limit ^ {v (t)} _ {v = 0} dv = \int\limit^t_0 \frac{Fdt} {m_ {c} + m_ {s} -bt}[/tex]
[tex]V (t) = - \frac {F} {b} ln (\frac {m_c + m_s-bt} {m_c + m_s})[/tex]