A parallel-plate capacitor has 2.10 cm × 2.10 cm electrodes with surface charge densities ±1.00×10-6 C/m2. A proton traveling parallel to the electrodes at 6.70×106 m/s enters the center of the gap between them. By what distance has the proton been deflected sideways when it reaches the far edge of the capacitor? Assume the field is uniform inside the capacitor and zero outside the capacitor.

Respuesta :

Answer:

x=0.53[tex]x10^{-3} m[/tex]

Explanation:

Using Gauss law the field is uniform so

E=ζ/ε

Charge densities ⇒ζ=1.[tex]x10x^{-6} \frac{C}{m^{2}}[/tex]

ε=8.85[tex]x10^{-12} \frac{C^{2}}{n*m^{2}}[/tex]

[tex]E=\frac{1x10^{-6}\frac{C}{m^{2}}}{8.85x^{-12}\frac{C^{2} }{N*m^{2}}} \\E=0.11299 x10^{-6} \frac{N}{C}[/tex]

Force of charge is

[tex]F_{q}=q*E\\F_{q}=1.6x10^{-19}C*0.11299x10^{6}\frac{N}{C} \\F_{q}=1.807x10^{-14} N[/tex]

[tex]F_{q}=m*a\\a=\frac{F_{q}}{m}=\frac{1.807x10^{-13}N}{1.67x10^{-27}}\\ a=1.082x0^{14} \frac{m}{s^{2}} \\t=\frac{x}{v}\\ x=2.1cm\frac{1m}{100cm}=0.021m \\v=6.7x10^{6}\frac{m}{s} \\ t=\frac{0.021m}{6.7x10^{6}\frac{m}{s}} \\t=3.13x10^{-9}s[/tex]

So finally knowing the acceleration and the time the distance can be find using equation of uniform motion

[tex]x_{f}=x_{o}+\frac{1}{2}*a*t^{2}\\ x_{o}=0\\x_{f}=\frac{1}{2} a*t^{2}=\frac{1}{2}*1.082x10^{14}\frac{m}{s^{2} } *(3.134x^{-9}s)^{2}  \\x_{f}=0.53x^{-3}m[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico