Answer:
x=0.53[tex]x10^{-3} m[/tex]
Explanation:
Using Gauss law the field is uniform so
E=ζ/ε
Charge densities ⇒ζ=1.[tex]x10x^{-6} \frac{C}{m^{2}}[/tex]
ε=8.85[tex]x10^{-12} \frac{C^{2}}{n*m^{2}}[/tex]
[tex]E=\frac{1x10^{-6}\frac{C}{m^{2}}}{8.85x^{-12}\frac{C^{2} }{N*m^{2}}} \\E=0.11299 x10^{-6} \frac{N}{C}[/tex]
Force of charge is
[tex]F_{q}=q*E\\F_{q}=1.6x10^{-19}C*0.11299x10^{6}\frac{N}{C} \\F_{q}=1.807x10^{-14} N[/tex]
[tex]F_{q}=m*a\\a=\frac{F_{q}}{m}=\frac{1.807x10^{-13}N}{1.67x10^{-27}}\\ a=1.082x0^{14} \frac{m}{s^{2}} \\t=\frac{x}{v}\\ x=2.1cm\frac{1m}{100cm}=0.021m \\v=6.7x10^{6}\frac{m}{s} \\ t=\frac{0.021m}{6.7x10^{6}\frac{m}{s}} \\t=3.13x10^{-9}s[/tex]
So finally knowing the acceleration and the time the distance can be find using equation of uniform motion
[tex]x_{f}=x_{o}+\frac{1}{2}*a*t^{2}\\ x_{o}=0\\x_{f}=\frac{1}{2} a*t^{2}=\frac{1}{2}*1.082x10^{14}\frac{m}{s^{2} } *(3.134x^{-9}s)^{2} \\x_{f}=0.53x^{-3}m[/tex]