Answer:
[tex]a_1=2.5\ m/s^2[/tex]
[tex]a_2=3\ m/s^2[/tex]
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
[tex]a_1[/tex] = Acceleration of light car
[tex]a_2=1.2a_1[/tex] = Acceleration of heavy car
[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow s_1=25\times t-\frac{1}{2}\times a_1\times t^2\\\Rightarrow s_1=25t-0.5a_1t^2[/tex]
[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow s_2=30\times t-\frac{1}{2}\times 1.2a_1\times t^2\\\Rightarrow s_2=30t-0.6a_1t^2[/tex]
Adding the equations we get
[tex]275=25t+30t-0.5a_1t^2-0.6a_1t^2\\\Rightarrow 275=55t-1.1a_1t^2[/tex]
[tex]v=u+at\\\Rightarrow 0=25-a_1\times t\\\Rightarrow 0=25-a_1t[/tex]
[tex]v=u+at\\\Rightarrow 0=30-1.2a_1\times t\\\Rightarrow 0=30-1.2a_1t[/tex]
Equating
[tex]25-a_1t=30-1.2a_1t\\\Rightarrow 25-30=(-1.2+1)a_1t\\\Rightarrow a_1t=\frac{-5}{-0.2}\\\Rightarrow a_1t=25\\\Rightarrow t=\frac{25}{a_1}[/tex]
[tex]\\\Rightarrow 275=55t-1.1a_1t^2\\\Rightarrow 275=55\times \frac{25}{a_1}-1.1a_1 \frac{25^2}{a_1^2}\\\Rightarrow a_1=\frac{55\times 25-1.1\times 25^2}{275}\\\Rightarrow a_1=2.5\ m/s^2[/tex]
Acceleration of smaller car 2.5 m/s²
[tex]a_2=1.2a_1\\\Rightarrow a_2=1.2\times 2.5\\\Rightarrow a_2=3\ m/s^2[/tex]
Acceleration of larger car 3 m/s²