Answer:
[tex]\large \boxed{\text{-61 kJ$\cdot$mol$^{-1}$}}[/tex]
Explanation:
Data:
H₃O⁺ + OH⁻ ⟶ 2H₂O
V/mL: 50.0 50.0
c/mol·L⁻¹: 1.0 1.0
ΔT = 6.5 °C
ρ = 1.210 g/mL
C = 4.18 J·°C⁻¹g⁻¹
C_cal = 12.0 J·°C⁻¹
Calculations:
(a) Moles of acid
[tex]\text{Moles of acid} = \text{0.0500 L} \times \dfrac{\text{1.0 mol}}{\text{1 L}} = \text{0.0500 mol}\\\\\text{Moles of base} = \text{0.0500 L} \times \dfrac{\text{1.0 mol}}{\text{1 L}} = \text{0.0500 mol}[/tex]
(b) Volume of solution
V = 50.0 mL + 50.0 mL = 100.0 mL
(c) Mass of solution
[tex]\text{Mass of solution} = \text{100.0 mL} \times \dfrac{\text{1.10 g}}{\text{1 mL}} = \text{110.0 g}[/tex]
(d) Calorimetry
There are three energy flows in this reaction.
q₁ = heat from reaction
q₂ = heat to warm the water
q₃ = heat to warm the calorimeter
q₁ + q₂ + q₃ = 0
nΔH + mCΔT + C_calΔT = 0
0.0500ΔH + 1.10×4.18×6.5 + 12.0×6.5 = 0
0.0500ΔH + 2989 + 78.0 = 0
0.0500ΔH + 3067 = 0
0.0500ΔH = -3067
ΔH = -3067/0.0500
= -61 000 J/mol
= -61 kJ/mol
[tex]\text{The enthalpy of reaction is $\large \boxed{\textbf{-61 kJ$\cdot$mol$^{\mathbf{-1}}$}}$}[/tex]
Note: The answer can have only two significant figures because that is all you gave for the change in temperature.