Respuesta :
Answers:
a) [tex]290.875 kJ/kg[/tex]
b) [tex]4.07 kW[/tex]
Explanation:
a) Since air is considered an ideal gas, its gas constant [tex]R[/tex] is established in a Thermodynamic table as [tex]R=0.287 \frac{kPa m^{3}}{kg K}[/tex].
On the other hand, we have to convert the temperatures from Celsius to Kelvin:
[tex]T_{1}=20\°C + 273.15 K=293.15 K \approx 295 K[/tex]
[tex]T_{2}=300\°C + 273.15 K=573.15 K \approx 580 K[/tex]
Then, we can find the enthalpy [tex]h[/tex] from another Thermodynamic table (A-17) with this given temperatures in Kelvin:
For [tex]T_{1}\approx 295 K[/tex], [tex]h_{1}=295.17 kJ/kg[/tex] (1)
For [tex]T_{2}\approx 580 K[/tex], [tex]h_{2}=586.04 kJ/kg[/tex] (2)
Now, the work required by the compressor (the work input) [tex]W_{in}[/tex] is given by the following equation for [tex]1 kg[/tex] of air (assuming there is only one inlet and one exit in this system, where the volume is controlled):
[tex]W_{in}=\Delta h=h_{2}-h_{1}[/tex] (3)
[tex]W_{in}=586.04 kJ/kg - 295.17 kJ/kg[/tex]
[tex]W_{in}=290.875 kJ/kg[/tex] (4) This is the work required by the air compressor
b) The power input [tex]\dot{W}[/tex] is given by:
[tex]\dot{W}=\dot{m}W_{in}[/tex] (5)
Where [tex]\dot{m}[/tex] is the mass flow rate at the inlet:
[tex]\dot{m}=\frac{\dot{V_{1}}}{V_{1}}[/tex] (6)
We already know the volume flow rate [tex]\dot{V_{1}}[/tex]:
[tex]\dot{V_{1}}=10\frac{L}{s}. \frac{1000 mL}{1 L} . \frac{10^{-6} m^{3}}{1 mL}=0.01 m^{3}[/tex] (7)
The volume at the inlet [tex]V_{1}[/tex] is given by the Ideal gas law equation:
[tex]V_{1}=\frac{R T_{1}}{P_{1}}[/tex] (8)
[tex]V_{1}=\frac{(0.287 \frac{kPa m^{3}}{kg K})(295 K)}{120 kPa}[/tex] (9)
[tex]V_{1}=0.705 m^{3}/kg[/tex] (10)
Substituting (7) and (10) in (6):
[tex]\dot{m}=\frac{0.01 m^{3}}{0.705 m^{3}/kg}[/tex] (11)
[tex]\dot{m}=0.014 kg/s[/tex] (12)
Substituting (12) in (5):
[tex]\dot{W}=(0.014 kg/s)(290.875 kJ/kg)[/tex] (5)
Finally:
[tex]\dot{W}=4.07 kK/s = 4.07 kW[/tex]