An adiabatic air compressor compresses 10 L/s of air at 120 kPa and 20°C to 1000 kPa and 300°C. Determine (a) the work required by the compressor, in kJ/kg, and (b) the power required to drive the air compressor, in kW. Air = 0.287 kPa m3 /kgK. cp,avg = 1.02 kJ/kgC

Respuesta :

Answers:

a) [tex]290.875 kJ/kg[/tex]

b) [tex]4.07 kW[/tex]

Explanation:

a) Since air is considered an ideal gas, its gas constant [tex]R[/tex] is established in a Thermodynamic table as [tex]R=0.287 \frac{kPa m^{3}}{kg K}[/tex].

On the other hand, we have to convert the temperatures from Celsius to Kelvin:

[tex]T_{1}=20\°C + 273.15 K=293.15 K \approx 295 K[/tex]

[tex]T_{2}=300\°C + 273.15 K=573.15 K \approx 580 K[/tex]

Then, we can find the enthalpy [tex]h[/tex] from another Thermodynamic table (A-17) with this given temperatures in Kelvin:

For [tex]T_{1}\approx 295 K[/tex], [tex]h_{1}=295.17 kJ/kg[/tex] (1)

For [tex]T_{2}\approx 580 K[/tex], [tex]h_{2}=586.04 kJ/kg[/tex] (2)

Now, the work required by the compressor (the work input) [tex]W_{in}[/tex] is given by the following equation for [tex]1 kg[/tex] of air (assuming there is only one inlet and one exit in this system, where the volume is controlled):

[tex]W_{in}=\Delta h=h_{2}-h_{1}[/tex] (3)

[tex]W_{in}=586.04 kJ/kg - 295.17 kJ/kg[/tex]

[tex]W_{in}=290.875 kJ/kg[/tex]  (4) This is the work required by the air compressor

b) The power input [tex]\dot{W}[/tex] is given by:

[tex]\dot{W}=\dot{m}W_{in}[/tex] (5)

Where [tex]\dot{m}[/tex] is the mass flow rate at the inlet:

[tex]\dot{m}=\frac{\dot{V_{1}}}{V_{1}}[/tex] (6)

We already know the volume flow rate [tex]\dot{V_{1}}[/tex]:

[tex]\dot{V_{1}}=10\frac{L}{s}. \frac{1000 mL}{1 L} . \frac{10^{-6} m^{3}}{1 mL}=0.01 m^{3}[/tex] (7)

The volume at the inlet [tex]V_{1}[/tex] is given by the Ideal gas law equation:

[tex]V_{1}=\frac{R T_{1}}{P_{1}}[/tex] (8)

[tex]V_{1}=\frac{(0.287 \frac{kPa m^{3}}{kg K})(295 K)}{120 kPa}[/tex] (9)

[tex]V_{1}=0.705 m^{3}/kg[/tex] (10)

Substituting (7) and (10) in (6):

[tex]\dot{m}=\frac{0.01 m^{3}}{0.705 m^{3}/kg}[/tex] (11)

[tex]\dot{m}=0.014 kg/s[/tex] (12)

Substituting (12) in (5):

[tex]\dot{W}=(0.014 kg/s)(290.875 kJ/kg)[/tex] (5)

Finally:

[tex]\dot{W}=4.07 kK/s = 4.07 kW[/tex]

ACCESS MORE
EDU ACCESS