Respuesta :
Answer:
The most precise name for a quadrilateral ABCD is a parallelogram
Step-by-step explanation:
step 1
Draw the figure
we have that
The coordinates of a quadrilateral are
A(-5,2),B(-3,5), C(4,5) and D(2,2)
using a graphing tool
Plot the coordinates to better understand the problem
see the attached figure
step 2
Find the length sides of the quadrilateral
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
Find the length side AB
A(-5,2),B(-3,5)
substitute in the formula
[tex]d=\sqrt{(5-2)^{2}+(-3+5)^{2}}[/tex]
[tex]d=\sqrt{(3)^{2}+(2)^{2}}[/tex]
[tex]d_A_B=\sqrt{13}\ units[/tex]
Find the length side CD
C(4,5), D(2,2)
substitute in the formula
[tex]d=\sqrt{(2-5)^{2}+(2-4)^{2}}[/tex]
[tex]d=\sqrt{(-3)^{2}+(-2)^{2}}[/tex]
[tex]d_C_D=\sqrt{13}\ units[/tex]
Find the length side AD
A(-5,2), D(2,2)
substitute in the formula
[tex]d=\sqrt{(2-2)^{2}+(2+5)^{2}}[/tex]
[tex]d=\sqrt{(0)^{2}+(7)^{2}}[/tex]
[tex]d_A_D=7\ units[/tex]
Find the length side BC
B(-3,5), C(4,5)
substitute in the formula
[tex]d=\sqrt{(5-5)^{2}+(4+3)^{2}}[/tex]
[tex]d=\sqrt{(0)^{2}+(7)^{2}}[/tex]
[tex]d_B_C=7\ units[/tex]
step 3
Find the slope of the length sides of the quadrilateral
The formula to calculate the slope between two points is equal to
[tex]m=\frac{y2-y1}{x2-x1}[/tex]
Find the slope of the length side AB
A(-5,2),B(-3,5)
substitute in the formula
[tex]m=\frac{5-2}{-3+5}[/tex]
[tex]m_A_B=\frac{3}{2}[/tex]
Find the slope of the length side CD
C(4,5), D(2,2)
substitute in the formula
[tex]m=\frac{2-5}{2-4}[/tex]
[tex]m_C_D=\frac{3}{2}[/tex]
Find the slope of the length side AD
A(-5,2), D(2,2)
substitute in the formula
[tex]m=\frac{2-2}{2+5}[/tex]
[tex]m_A_D=0[/tex] ----> is a horizontal line
Find the slope of the length side BC
B(-3,5), C(4,5)
substitute in the formula
substitute in the formula
[tex]m=\frac{5-5}{4+3}[/tex]
[tex]m_B_C=0[/tex] ----> is a horizontal line
step 4
Compare the length sides
[tex]d_A_B=\sqrt{13}\ units[/tex]
[tex]d_C_D=\sqrt{13}\ units[/tex]
[tex]d_A_D=7\ units[/tex]
[tex]d_B_C=7\ units[/tex]
opposite sides are congruent
step 5
Compare the slopes
Remember that
If the lines are parallel, then their slopes are the same
[tex]m_A_B=\frac{3}{2}[/tex]
[tex]m_C_D=\frac{3}{2}[/tex]
[tex]m_A_D=0[/tex]
[tex]m_B_C=0[/tex]
so
opposite sides are parallel
therefore
The most precise name for a quadrilateral ABCD is a parallelogram
