Respuesta :

Answer:

The most precise name for a quadrilateral ABCD is a parallelogram

Step-by-step explanation:

step 1

Draw the figure

we have that

The coordinates of a quadrilateral are

A(-5,2),B(-3,5), C(4,5) and D(2,2)

using a graphing tool

Plot the coordinates to better understand the problem

see the attached figure

step 2

Find the length sides of the quadrilateral

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Find the length side AB

A(-5,2),B(-3,5)

substitute in the formula

[tex]d=\sqrt{(5-2)^{2}+(-3+5)^{2}}[/tex]

[tex]d=\sqrt{(3)^{2}+(2)^{2}}[/tex]

[tex]d_A_B=\sqrt{13}\ units[/tex]

Find the length side CD

C(4,5), D(2,2)

substitute in the formula

[tex]d=\sqrt{(2-5)^{2}+(2-4)^{2}}[/tex]

[tex]d=\sqrt{(-3)^{2}+(-2)^{2}}[/tex]

[tex]d_C_D=\sqrt{13}\ units[/tex]

Find the length side AD

A(-5,2), D(2,2)

substitute in the formula

[tex]d=\sqrt{(2-2)^{2}+(2+5)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(7)^{2}}[/tex]

[tex]d_A_D=7\ units[/tex]

Find the length side BC

B(-3,5), C(4,5)

substitute in the formula

[tex]d=\sqrt{(5-5)^{2}+(4+3)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(7)^{2}}[/tex]

[tex]d_B_C=7\ units[/tex]

step 3

Find the slope of the length sides of the quadrilateral

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

Find the slope of the length side AB

A(-5,2),B(-3,5)

substitute in the formula

[tex]m=\frac{5-2}{-3+5}[/tex]

[tex]m_A_B=\frac{3}{2}[/tex]

Find the slope of the length side CD

C(4,5), D(2,2)

substitute in the formula

[tex]m=\frac{2-5}{2-4}[/tex]

[tex]m_C_D=\frac{3}{2}[/tex]

Find the slope of the length side AD

A(-5,2), D(2,2)

substitute in the formula

[tex]m=\frac{2-2}{2+5}[/tex]

[tex]m_A_D=0[/tex]  ----> is a horizontal line

Find the slope of the length side BC

B(-3,5), C(4,5)

substitute in the formula

substitute in the formula

[tex]m=\frac{5-5}{4+3}[/tex]

[tex]m_B_C=0[/tex]  ----> is a horizontal line

step 4

Compare the length sides

[tex]d_A_B=\sqrt{13}\ units[/tex]

[tex]d_C_D=\sqrt{13}\ units[/tex]

[tex]d_A_D=7\ units[/tex]

[tex]d_B_C=7\ units[/tex]

opposite sides are congruent

step 5

Compare the slopes

Remember that

If the lines are parallel, then their slopes are the same

[tex]m_A_B=\frac{3}{2}[/tex]

[tex]m_C_D=\frac{3}{2}[/tex]

[tex]m_A_D=0[/tex]

[tex]m_B_C=0[/tex]

so

opposite sides are parallel

therefore

The most precise name for a quadrilateral ABCD is a parallelogram

Ver imagen calculista
ACCESS MORE
EDU ACCESS