Answer:
[tex]\alpha =-2.2669642\times^{-10}rad/s^2[/tex]
Explanation:
Angular acceleration is defined by [tex]\alpha =\frac{\Delta \omega}{\Delta t}=\frac{\omega_f-\omega_i}{\Delta t}[/tex]
Angular velocity is related to the period by [tex]\omega=\frac{2\pi}{T}[/tex]
Putting all together:
[tex]\alpha =\frac{\frac{2\pi}{T_f}-\frac{2\pi}{T_i}}{\Delta t}=\frac{2\pi}{\Delta t}(\frac{1}{T_f}-\frac{1}{T_i})[/tex]
Taking our initial (i) point now and our final (f) point one year later, we would have:
[tex]\Delta t=1\ year=(365)(24)(60)(60)s=31536000 s[/tex]
[tex]T_i=0.0786s[/tex]
[tex]T_f=0.0786s+7.03\times10^{-6}s[/tex]
So for our values we have:
[tex]\alpha =\frac{2\pi}{\Delta t}(\frac{1}{T_f}-\frac{1}{T_i})=\frac{2\pi}{31536000s}(\frac{1}{0.0786s+7.03\times10^{-6}s}-\frac{1}{0.0786s})=-2.2669642\times^{-10}rad/s^2[/tex]
Where the minus sign indicates it is decelerating.