Respuesta :
Given that you mention the divergence theorem, and that part (b) is asking you to find the downward flux through the disk [tex]x^2+y^2\le3[/tex], I think it's same to assume that the hemisphere referred to in part (a) is the upper half of the sphere [tex]x^2+y^2+z^2=3[/tex].
a. Let [tex]C[/tex] denote the hemispherical cap [tex]z=\sqrt{3-x^2-y^2}[/tex], parameterized by
[tex]\vec r(u,v)=\sqrt3\cos u\sin v\,\vec\imath+\sqrt3\sin u\sin v\,\vec\jmath+\sqrt3\cos v\,\vec k[/tex]
with [tex]0\le u\le2\pi[/tex] and [tex]0\le v\le\frac\pi2[/tex]. Take the normal vector to [tex]C[/tex] to be
[tex]\vec r_v\times\vec r_u=3\cos u\sin^2v\,\vec\imath+3\sin u\sin^2v\,\vec\jmath+3\sin v\cos v\,\vec k[/tex]
Then the upward flux of [tex]\vec F=(2z+2)\,\vec k[/tex] through [tex]C[/tex] is
[tex]\displaystyle\iint_C\vec F\cdot\mathrm d\vec S=\int_0^{2\pi}\int_0^{\pi/2}((2\sqrt3\cos v+2)\,\vec k)\cdot(\vec r_v\times\vec r_u)\,\mathrm dv\,\mathrm du[/tex]
[tex]\displaystyle=3\int_0^{2\pi}\int_0^{\pi/2}\sin2v(\sqrt3\cos v+1)\,\mathrm dv\,\mathrm du[/tex]
[tex]=\boxed{2(3+2\sqrt3)\pi}[/tex]
b. Let [tex]D[/tex] be the disk that closes off the hemisphere [tex]C[/tex], parameterized by
[tex]\vec s(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath[/tex]
with [tex]0\le u\le\sqrt3[/tex] and [tex]0\le v\le2\pi[/tex]. Take the normal to [tex]D[/tex] to be
[tex]\vec s_v\times\vec s_u=-u\,\vec k[/tex]
Then the downward flux of [tex]\vec F[/tex] through [tex]D[/tex] is
[tex]\displaystyle\int_0^{2\pi}\int_0^{\sqrt3}(2\,\vec k)\cdot(\vec s_v\times\vec s_u)\,\mathrm du\,\mathrm dv=-2\int_0^{2\pi}\int_0^{\sqrt3}u\,\mathrm du\,\mathrm dv[/tex]
[tex]=\boxed{-6\pi}[/tex]
c. The net flux is then [tex]\boxed{4\sqrt3\pi}[/tex].
d. By the divergence theorem, the flux of [tex]\vec F[/tex] across the closed hemisphere [tex]H[/tex] with boundary [tex]C\cup D[/tex] is equal to the integral of [tex]\mathrm{div}\vec F[/tex] over its interior:
[tex]\displaystyle\iint_{C\cup D}\vec F\cdot\mathrm d\vec S=\iiint_H\mathrm{div}\vec F\,\mathrm dV[/tex]
We have
[tex]\mathrm{div}\vec F=\dfrac{\partial(2z+2)}{\partial z}=2[/tex]
so the volume integral is
[tex]2\displaystyle\iiint_H\mathrm dV[/tex]
which is 2 times the volume of the hemisphere [tex]H[/tex], so that the net flux is [tex]\boxed{4\sqrt3\pi}[/tex]. Just to confirm, we could compute the integral in spherical coordinates:
[tex]\displaystyle2\int_0^{\pi/2}\int_0^{2\pi}\int_0^{\sqrt3}\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi=4\sqrt3\pi[/tex]
