Explanation:
It is given that,
Wavelength of red light, [tex]\lambda=676.4\ nm=676.4\times 10^{-9}\ m[/tex]
Power of the laser, [tex]P=300\ mW=0.3\ W[/tex]
(a) The energy carried by each photon is given by :
[tex]E=\dfrac{hc}{\lambda}[/tex]
[tex]E=\dfrac{6.63\times 10^{-34}\times 3\times 10^8}{676.4\times 10^{-9}}[/tex]
[tex]E=2.94\times 10^{-19}\ J[/tex]
(b) Let n is the number of photons emitted by the laser per second. It can be calculated as :
[tex]n=\dfrac{Power}{Energy\ of\ one\ photon}[/tex]
[tex]n=\dfrac{0.3}{2.94\times 10^{-19}}[/tex]
[tex]n=1.02\times 10^{18}\ photon/s[/tex]
Hence, this is the required solution.