Answer:
Step-by-step explanation:
a. when t=0,h=3ft
[tex]h(t)=-16 (t^2-\frac{47}{16}x+(\frac{47}{32} )^2)+\frac{47^2}{32^2} *16+3\\=-16(t-\frac{47}{32})^2+\frac{2209}{64}+3\\=-16(t-\frac{47}{32})^2+\frac{2209+192}{64}\\when~ t=\frac{47}{32}\\h=\frac{2301}{64}\\or~v^2-u^2=2gh\\\\0^2-47^2=2*(-32)h\\or h=\frac{47^2}{64}=\frac{2209}{64} \\height from the ground=\frac{2209}{64} +3=\frac{2301}{64}[/tex]
c.t=47/32 sec
d.
time taken to fall 2301/64 ft=0*t+\frac{1}{2}*32*t^2
t^2=\frac{2301}{64*16}
t=\frac{\sqrt{2301}}{8*4}=\frac {47.97}{32}
total ~time=\frac{47+47.97}{32}=\frac{94.97}{32} sec