Answer:
[tex]5.67\%[/tex]
Step-by-step explanation:
The relative change is defined by the following equation:
[tex]Relative\hspace{3}change=\frac{x-x_r_e_f_e_r_e_n_c_e}{x_r_e_f_e_r_e_n_c_e}[/tex] (1)
Where:
[tex]x=Value\hspace{3}of\hspace{3}indicator\hspace{3}in\hspace{3}period\hspace{3}2[/tex]
[tex]x_r_e_f_e_r_e_n_c_e=Value\hspace{3}of\hspace{3}indicator\hspace{3}in\hspace{3}period\hspace{3}1[/tex]
With this in mind, let's replace the values in the equation (1):
[tex]Relative\hspace{3}change=\frac{34.7-5.2}{5.2}=\frac{29.5}{5.2}=5.673076923\approx5.67\%[/tex]