Respuesta :
Answer:
For the interval [1, 1.0] the average velocity is [tex]\frac{\Delta h}{\Delta t}={Undefined}[/tex]
For the interval [1, 1.01] the average velocity is [tex]\frac{\Delta h}{\Delta t} = -8.349 \:\frac{m}{s}[/tex]
For the interval [1, 1.005] the average velocity is [tex]\frac{\Delta h}{\Delta t} = -8.325 \:\frac{m}{s}[/tex]
For the interval [1, 1.001] the average velocity is [tex]\frac{\Delta h}{\Delta t} = -8.305 \:\frac{m}{s}[/tex]
The instantaneous velocity at t = 1 is [tex]-8.3 \:\frac{m}{s}[/tex].
Explanation:
The average velocity over [tex][t_0,t_1][/tex] is
[tex]\frac{\Delta s}{\Delta t} =\frac{s(t_1)-s(t_0)}{t_1-t_0}[/tex]
where
[tex]\Delta s=s(t_1)-s(t_0)[/tex] = change in position
[tex]\Delta t =t_1-t_0[/tex] = change in time (length of interval)
We know that the height in meters a t seconds is given
[tex]h(t) = 1.5t - 4.9t^2[/tex]
so the average velocity is [tex]\frac{\Delta h}{\Delta t} = \frac{(1.5t_1 - 4.9t_1^2)-(1.5t_0 - 4.9t_0^2)}{t_1-t_0}[/tex]
Consider the interval [1, 1.0]
[tex]\frac{\Delta h}{\Delta t} = \frac{(1.5(1.0) - 4.9(1.0)^2)-(1.5(1) - 4.9(1)^2)}{1.0-1}\\\\\frac{\Delta h}{\Delta t} =\{Undefined}[/tex]
For the interval [1, 1.01]
[tex]\frac{\Delta h}{\Delta t} = \frac{(1.5(1.01) - 4.9(1.01)^2)-(1.5(1) - 4.9(1)^2)}{1.01-1}\\\\\frac{\Delta h}{\Delta t} = -8.349 \:\frac{m}{s}[/tex]
For the interval [1, 1.005]
[tex]\frac{\Delta h}{\Delta t} = \frac{(1.5(1.005) - 4.9(1.005)^2)-(1.5(1) - 4.9(1)^2)}{1.005-1}\\\\\frac{\Delta h}{\Delta t} = -8.325 \:\frac{m}{s}[/tex]
For the interval [1, 1.001]
[tex]\frac{\Delta h}{\Delta t} = \frac{(1.5(1.001) - 4.9(1.001)^2)-(1.5(1) - 4.9(1)^2)}{1.001-1}\\\\\frac{\Delta h}{\Delta t} = -8.305 \:\frac{m}{s}[/tex]
The instantaneous rate of change is the limit of the average rates of change. We estimate the instantaneous rate of change at [tex]x=x_0[/tex] by computing the average rate of change over smaller and smaller intervals
From the calculations above we can see when the time interval shrinks the average velocity tends to the value [tex]-8.3 \:\frac{m}{s}[/tex]. This suggests that this value is a good candidate for the instantaneous velocity at t = 1.