Answer:
2
Step-by-step explanation:
We want to condense left hand side into one logarithm
Use power rule:
[tex]\ln(2^3)+\ln(8)=2 \ln(4x)[/tex]
Use product rule:
[tex]\ln(2^3 \cdot 8)=2\ln(4x)[/tex]
Simplify:
[tex]\ln(64)=2\ln(4x)[/tex]
Divide both sides by 2:
[tex]\frac{1}{2}\ln(64)=\ln(4x)[/tex]
Use power rule:
[tex]\ln(64^\frac{1}{2})=\ln(4x)[/tex]
[tex]\ln(8)=\ln(4x)[/tex]
[tex]8=4x[/tex]
Divide both sides by 4:
[tex]2=x[/tex]
[tex]x=2[/tex]
Check:
[tex]\ln(2^3)+\ln(8)=2 \ln(4x)[/tex]
Replace [tex]x[/tex] with 2:
[tex]\ln(2^3)+\ln(8)=2 \ln(4(2))[/tex]
[tex]\ln(64)=2 \ln(8)[/tex]
[tex]\ln(64)=\ln(8^2)[/tex]
[tex]\ln(64)=\ln(64)[/tex] is true so [tex]x=2[/tex] is a solution.