Respuesta :

Answer:

2

Step-by-step explanation:

We want to condense left hand side into one logarithm

Use power rule:

[tex]\ln(2^3)+\ln(8)=2 \ln(4x)[/tex]

Use product rule:

[tex]\ln(2^3 \cdot 8)=2\ln(4x)[/tex]

Simplify:

[tex]\ln(64)=2\ln(4x)[/tex]

Divide both sides by 2:

[tex]\frac{1}{2}\ln(64)=\ln(4x)[/tex]

Use power rule:

[tex]\ln(64^\frac{1}{2})=\ln(4x)[/tex]

[tex]\ln(8)=\ln(4x)[/tex]

[tex]8=4x[/tex]

Divide both sides by 4:

[tex]2=x[/tex]

[tex]x=2[/tex]

Check:

[tex]\ln(2^3)+\ln(8)=2 \ln(4x)[/tex]

Replace [tex]x[/tex] with 2:

[tex]\ln(2^3)+\ln(8)=2 \ln(4(2))[/tex]

[tex]\ln(64)=2 \ln(8)[/tex]

[tex]\ln(64)=\ln(8^2)[/tex]

[tex]\ln(64)=\ln(64)[/tex] is true so [tex]x=2[/tex] is a solution.

ACCESS MORE
EDU ACCESS
Universidad de Mexico