Respuesta :
Answer:
[tex]\frac{0.1761+2\log(x)}{-0.3010}[/tex]
Step-by-step explanation:
Data provided:
[tex]\log_{1/2}(\frac{3x^2}{2})[/tex]
now,
we know the properties of log functions as:
1) log(AB) = log(A) + log(B)
2) [tex]\log(\frac{A}{B})[/tex] = log(A) - log(B)
3) log(xⁿ) = n × log(x)
thus,
[tex]\log_{1/2}(\frac{3x^2}{2})[/tex] = [tex]\log_{1/2}(3x^2)[/tex] - [tex]\log_{1/2}(2)[/tex]
or
[tex]\log_{1/2}(\frac{3x^2}{2})[/tex] = [tex]\log_{1/2}(3)+\log_{\frac{1}{2}}(x^2)[/tex] - [tex]\log_{1/2}(2)[/tex]
or
using property 3
[tex]\log_{1/2}(\frac{3x^2}{2})[/tex] = [tex]\log_{1/2}(3)+2\log_{\frac{1}{2}}(x)[/tex] - [tex]\log_{1/2}(2)[/tex]
also,
[tex]\log_a(x)=\frac{\log(x)}{\log(a)}[/tex]
thus,
[tex]\log_{1/2}(\frac{3x^2}{2})[/tex] = [tex]\frac{\log(3)}{\log(\frac{1}{2})}+2\times[\frac{\log(x)}{\log(\frac{1}{2}}]-\frac{\log(2)}{\log(\frac{1}{2})}[/tex]
or
[tex]\log_{1/2}(\frac{3x^2}{2})[/tex] = [tex]\frac{\log(3)+2\log(x)-\log(2)}{\log(\frac{1}{2})}[/tex]
or
[tex]\log_{1/2}(\frac{3x^2}{2})[/tex] = [tex]\frac{\log(3)+2\log(x)-\log(2)}{\log(1)-log(2)}[/tex]
now,
log(1) = 0
log(2) = 0.3010
log(3) = 0.4771
thus,
[tex]\log_{1/2}(\frac{3x^2}{2})[/tex] = [tex]\frac{0.4771+2\log(x)-0.3010}{0-0.3010}[/tex]
or
[tex]\log_{1/2}(\frac{3x^2}{2})[/tex] = [tex]\frac{0.1761+2\log(x)}{-0.3010}[/tex]
Answer:
-0.58-6.64log(x)
Step-by-step explanation:
The given expression is
[tex]log_{\frac{1}{2}}(\frac{3x^2}{2})[/tex]
It can be rewritten as
[tex]log_{\frac{1}{2}}(\frac{1}{2}\times 3\times x^2)[/tex]
Using the properties and rules for logarithms, we get
[tex]log_{\frac{1}{2}}(\frac{1}{2})+log_{\frac{1}{2}}(3)+log_{\frac{1}{2}}(x^2)[/tex] [tex][\because log_a(mn)=log_am+log_an][/tex]
[tex]1+log_{\frac{1}{2}}(3)+2log_{\frac{1}{2}}x[/tex] [tex][\because log_a(a)=1,logx^n=nlogx][/tex]
[tex]1+\frac{log(3)}{log(\frac{1}{2})}+2\frac{log(x)}{log(\frac{1}{2})}[/tex] [tex][\because log_a(b)=\frac{logb}{loga}][/tex]
[tex]1+\frac{log(3)}{log(1)-log(2)}+2\frac{log(x)}{log(1)-log(2)}[/tex] [tex][\because log\frac{a}{b}=loga-logb][/tex]
We know that,
log (1) = 0
log (2) = 0.301
log (3) = 0.477
Substitute these values in the
[tex]1+\frac{0.477}{0-0.301}+2\frac{log(x)}{0-0.301}[/tex]
[tex]1-1.58-2\frac{log(x)}{0.301}[/tex]
[tex]-0.58-6.64log(x)[/tex]
Therefore, the expanded form of given expression is -0.58-6.64log(x).
Otras preguntas
