Respuesta :
Answer:
Option C.
Step-by-step explanation:
Given information: TV║QS, RV=x+10, VS=x, RT=x+4 and TQ=x-3.
Triangle Proportionality Theorem: This theorem states that if a line segment is parallel to the base of a triangle and it intersects the other two sides, then it divides those sides proportionally.
Using the Triangle Proportionality Theorem, we get
[tex]\dfrac{RT}{TQ}=\dfrac{RV}{VS}[/tex]
Substitute the given values in the above equation.
[tex]\dfrac{x+4}{x-3}=\dfrac{x+10}{x}[/tex]
On cross multiplication we get
[tex]x(x+4)=(x+10)(x-3)[/tex]
[tex]x^2+4x=x^2-3x+10x-30[/tex]
[tex]x^2+4x=x^2+7x-30[/tex]
Subtract x² from both sides.
[tex]x^2+4x-x^2=x^2+7x-30-x^2[/tex]
[tex]4x=7x-30[/tex]
Subtract 7x from both sides.
[tex]4x-7x=7x-30-7x[/tex]
[tex]-3x=-30[/tex]
Divide both sides by -3.
[tex]x=\frac{-30}{-3}[/tex]
[tex]x=10[/tex]
The value of x is 10. Therefore, the correct option is C.

