Respuesta :

AMB000

Answer:

[tex]x=+i\sqrt{20}\approx+4.472i[/tex]

[tex]x=-i\sqrt{20}\approx-4.472i[/tex]

Step-by-step explanation:

Starting from [tex]x^2+20=0[/tex], we do [tex]x^2=-20[/tex], which means [tex]x=\pm\sqrt{-20}[/tex], which can be written as [tex]x=\pm\sqrt{(-1)(20)}[/tex], which gives us [tex]x=\pm\sqrt{(-1)}\sqrt{(20)}[/tex], which we know is [tex]x=\pm i \sqrt{(20)}[/tex], so our solutions are:

[tex]x=+i\sqrt{(20)}[/tex]

[tex]x=-i\sqrt{(20)}[/tex]

Which can be approximated to:

[tex]x\approx+4.472i[/tex]

[tex]x\approx-4.472i[/tex]

ACCESS MORE
EDU ACCESS