Lines a and b are parallel. Line c is a transversal. Find the measures of all angles formed by a, b, and c, One of the angles is 70° bigger than the other

Respuesta :

Answer:

Angles are either 55° or 125°.

Step-by-step explanation:

See the attached diagram.

Let aa' and bb' are two parallel straight lines and cc' is a transversal that meets aa' at o and bb' at o' points.

Now, ∠coa' + ∠coa =180° ..... (1)

Assume by the condition given ∠coa' = x and ∠coa = x+70

Hence, from equation (1), 2x + 70 = 180

x = 55°

Then ∠coa' =55° and ∠coa = 70+55 = 125°

So, ∠o'oa' = 125° as ∠coa = ∠ o'oa' {Opposite angles}

Again, ∠aoo' = 55° as ∠coa' = ∠aoo' {Opposite angles}

Now, ∠coa' = ∠oo'b' {Corresponding angles} = 55°

and ∠bo'c' = ∠oo'b' = 55° {Opposite angles}

Again ∠oo'b = ∠coa = 125° {Corresponding angles}

and ∠b'o'c' = ∠oo'b =125° {Opposite angles}

(Answer)

Ver imagen rani01654

Answer:

The 4 angles formed in each case are: [tex]55^{0}[/tex], [tex]55^{0}[/tex], [tex]125^{0}[/tex] and [tex]125^{0}[/tex].

Step-by-step explanation:

Line c being transversal implies that it forms 4 angles with lines a and b individually of which 2 in each case are opposite angles, thus are equal.

Let one of the angles be represented by [tex]x^{0}[/tex], but the other is greater by [tex]70^{0}[/tex], so that =  ([tex]70^{0}[/tex] + [tex]x^{0}[/tex])

Thus, we have;

    [tex]x^{0}[/tex] + [tex]x^{0}[/tex] + ([tex]70^{0}[/tex] + [tex]x^{0}[/tex]) + ([tex]70^{0}[/tex] + [tex]x^{0}[/tex]) = [tex]360^{0}[/tex]    ( the sum of angles at a point)

     [tex]x^{0}[/tex] + [tex]x^{0}[/tex] + [tex]70^{0}[/tex] + [tex]x^{0}[/tex] + [tex]70^{0}[/tex] + [tex]x^{0}[/tex] = [tex]360^{0}[/tex]

[tex]4x^{0}[/tex]  +  [tex]140^{0}[/tex] = [tex]360^{0}[/tex]

[tex]4x^{0}[/tex] = [tex]360^{0}[/tex] - [tex]140^{0}[/tex]

[tex]4x^{0}[/tex] = [tex]220^{0}[/tex]

Divide both sides by 4,

[tex]x^{0}[/tex] = [tex]55^{0}[/tex]

The other angle is calculated thus,

   ([tex]70^{0}[/tex] + [tex]x^{0}[/tex]) = [tex]70^{0}[/tex] + [tex]55^{0}[/tex]

                 = [tex]125^{0}[/tex]

Thus the 4 angles formed in both cases have the values; [tex]55^{0}[/tex], [tex]55^{0}[/tex], [tex]125^{0}[/tex] and [tex]125^{0}[/tex].

RELAXING NOICE
Relax