Respuesta :
Answer:
(b) 31.85
Explanation:
First, we need to know the z-score for a one-sided confidence interval with 95% coverage. Looking at a z-score table, this value is 1.645. Then:
[tex]x = (z \cdot \sigma) + \mu = (-1.645 \cdot 0.7) + 33 = 31.85[/tex]

z-scores illustrates how far a data element is, from the mean of the dataset.
The value of x is (e) 34.40
The given parameters are:
[tex]\mu = 33[/tex] --- mean
[tex]\sigma = 0.7[/tex] --- standard deviation
[tex]\alpha = 95\%[/tex] --- confidence level
First, we determine the z-score from the confidence interval [tex]\alpha = 95\%[/tex]
From the z score table, the corresponding z score of [tex]\alpha = 95\%[/tex] is:
[tex]z = 1.960[/tex]
The value of x, is calculated using:
[tex]z = \frac{x - \mu}{\sigma}[/tex]
Substitute values for z, [tex]\mu[/tex] and [tex]\sigma[/tex]
[tex]1.960 = \frac{x - 33}{0.7}[/tex]
Multiply both sides by 0.7
[tex]0.7 \times 1.960 = \frac{x - 33}{0.7} \times 0.7[/tex]
[tex]1.372 = x - 33[/tex]
Collect like terms
[tex]x = 33 + 1.372[/tex]
[tex]x = 34.372[/tex]
Approximate
[tex]x = 34.40[/tex]
Hence, the value of x is (e) 34.40
Read more about z-scores at:
brainly.com/question/13299273
