Respuesta :
Answer: (a) 3.43
(b) 1.89
(c) 1.54 to 5.32
Step-by-step explanation:
[tex]\\[/tex](a) Let [tex]x_{1}[/tex] represent the average ratings of ships that carry fewer than 500 passengers and [tex]x_{2}[/tex] represent the ship that carry more than 500 passengers. [tex]\\[/tex]Then , the point of estimate of the difference between the population mean rating for the ships that carry fewer than 500 passengers and the population mean rating for ship that carry 500 or more passengers is given as :[tex]\\[/tex] [tex]x_{1}[/tex] – [tex]x_{2}[/tex] , which is
[tex]\\[/tex]85.33 – 81. 9
[tex]\\[/tex]= 3.43
[tex]\\[/tex](b) To find the margin error using 95% Confidence Interval and [tex]Z_{\frac{\alpha }{2} }[/tex] = 1.96
[tex]\\[/tex]Since we are dealing with two samples , the formula is given as
[tex]x_{1}[/tex] – [tex]x_{2}[/tex] ± [tex]Z_{\frac{\alpha }{2} }[/tex] [tex]\sqrt{\frac{sigma1^{2} }{n1}+\frac{sigma2}{n2} }[/tex]
[tex]\\[/tex]Where sigma is the standard deviation
[tex]\\[/tex]We have, 3.43 ± 1.96 [tex]\sqrt{\frac{4.58^{2} }{37}+\frac{3.95^{2} }{43} }[/tex]
[tex]\\[/tex]= 3.43 ± 1.96( 0.9643)
[tex]\\[/tex]= 3.43 ± 1.89
[tex]\\[/tex]Therefore the margin error is 1.89
[tex]\\[/tex](c) the 95% confidence interval estimate of the difference between the population mean ratings for the two sizes of ships implies
[tex]\\[/tex]3.43 – 1.89 t0 3.43 + 1.89
[tex]\\[/tex]= 1.54 to 5.32
