Given triangle QRP find the value of x and the measures of angles Q and R

Answer:
m<R= 52°
m<Q= 102°
Step-by-step explanation:
Since the sum of angles in a triangle = 180°,
3x+24+2x+x=180
6x+24=180
6x=180-24
6x=156
x=26
Answer:
The value of x is 26.
Angle Q is 102° and angle R is 52°.
Step-by-step explanation:
Given : Triangle QRP with [tex]\angle Q=(3x+24)^\circ,\ \angle R=(2x)^\circ,\ \angle P=x^\circ[/tex]
To find : The value of x and the measures of angles Q and R ?
Solution :
According to property of triangle,
Sum of all angles of a triangle is 180°.
i.e. [tex]\angle Q+\angle R+\angle P=180^\circ[/tex]
Substitute the angles,
[tex](3x+24)^\circ+ (2x)^\circ+x^\circ=180^\circ[/tex]
[tex]3x+24+2x+x=180[/tex]
[tex]6x=180-24[/tex]
[tex]6x=156[/tex]
[tex]x=\frac{156}{6}[/tex]
[tex]x=26[/tex]
The value of x is 26.
So, [tex]\angle Q=(3x+24)^\circ=3(26)+24=102^\circ[/tex]
[tex]\angle R=(2x)^\circ =2(26)=52^\circ[/tex]
[tex]\angle P=x^\circ =26^\circ[/tex]
Therefore, angle Q is 102° and angle R is 52°.