Respuesta :

Answer:

m<R= 52°

m<Q= 102°

Step-by-step explanation:

Since the sum of angles in a triangle = 180°,

3x+24+2x+x=180

6x+24=180

6x=180-24

6x=156

x=26

Answer:

The value of x is 26.

Angle Q is 102° and angle R is 52°.

Step-by-step explanation:

Given : Triangle QRP with [tex]\angle Q=(3x+24)^\circ,\ \angle R=(2x)^\circ,\ \angle P=x^\circ[/tex]

To find : The value of x and the measures of angles Q and R ?

Solution :

According to property of triangle,

Sum of all angles of a triangle is 180°.

i.e. [tex]\angle Q+\angle R+\angle P=180^\circ[/tex]

Substitute the angles,

[tex](3x+24)^\circ+ (2x)^\circ+x^\circ=180^\circ[/tex]

[tex]3x+24+2x+x=180[/tex]

[tex]6x=180-24[/tex]

[tex]6x=156[/tex]

[tex]x=\frac{156}{6}[/tex]

[tex]x=26[/tex]

The value of x is 26.

So, [tex]\angle Q=(3x+24)^\circ=3(26)+24=102^\circ[/tex]

[tex]\angle R=(2x)^\circ =2(26)=52^\circ[/tex]

[tex]\angle P=x^\circ =26^\circ[/tex]

Therefore, angle Q is 102° and angle R is 52°.

ACCESS MORE