Answer:
The time travel is
t=8 s
Explanation:
[tex]a= 2 \frac{m}{s^{2} } \\v=-6 \frac{m}{s} \\x=16m[/tex]
[tex]x_{f}=x_{o}+v_{o}*t+\frac{1}{2} *a*t^{2}[/tex]
[tex]x_{f}=0-6*t+\frac{1}{2} *2*t^{2}[/tex]
[tex]t^{2}-6*t-16=0\\ using :\\\frac{-b+/-\sqrt{b^{2}-4*c*a } }{2} \\\frac{-(-6)+/-\sqrt{(-6)^{2}-4*(-16)*(1) } }{2}=\frac{3}{2} +/- \frac{10}{2} \\t_{1} = 2s \\t_{2} = 8s[/tex]
Check
[tex]t_{2}=8s[/tex]
[tex]x_{f}=x_{o}+v_{o}*t+\frac{1}{2} *a*t^{2}[/tex]
[tex]x_{f}=0-6*+\frac{1}{2} *2*8^{2}[/tex]
[tex]x_{f}=-48+64\\x_{f}=16[/tex]