Answer:
[tex]B(-7,-4)[/tex]
Step-by-step explanation:
Let the co-ordinates of B be [tex](x_{2},y_{2})[/tex]
If a point [tex]M(x,y)[/tex] is a mid-point of line segment AB with [tex]A(x_{1},y_{1})[/tex] and [tex]B(x_{2},y_{2})[/tex], then:
[tex]x=\frac{x_{1}+x_{2}}{2}\\y=\frac{y_{1}+y_{2}}{2}[/tex]
Here, [tex]M(x,y)[/tex] is [tex]M(-4,-3), A(x_{1},y_{1})[/tex] is [tex]A(-1,-2)[/tex].
So, [tex]x = -4, y = -3, x_{1} = -1, y_{1}=-2[/tex]
Plug in the formula and solve for unknowns.
[tex]x=\frac{x_{1}+x_{2}}{2}\\-4=\frac{-1+x_{2}}{2}\\x_{2}=-8+1=-7\\\\y=\frac{y_{1}+y_{2}}{2}\\-3=\frac{-2+y_{2}}{2}\\y_{2}=-6+2=-4[/tex]
Therefore, the co-ordinates of point B are [tex]B(-7,-4)[/tex]