Answer:
DIAMETER = 9.797 m
POWER = [tex]\dot W = 28.6 kW[/tex]
Explanation:
Given data:
circular windmill diamter D1 = 8m
v1 = 12 m/s
wind speed = 8 m/s
we know that specific volume is given as
[tex]v =\frac{RT}{P}[/tex]
where v is specific volume of air
considering air pressure is 100 kPa and temperature 20 degree celcius
[tex]v = \frac{0.287\times 293}{100}[/tex]
v = 0.8409 m^3/ kg
from continuity equation
[tex]A_1 V_1 = A_2 V_2[/tex]
[tex]\frac{\pi}{4}D_1^2 V_1 = \frac{\pi}{4}D_1^2 V_2 [/tex]
[tex]D_2 = D_1 \sqrt{\frac{V_1}{V_2}}[/tex]
[tex]D_2 = 8 \times \sqrt{\frac{12}{8}} [/tex]
[tex]D_2 = 9.797 m[/tex]
mass flow rate is given as
[tex]\dot m = \frac{A_1 V_1}{v} = \frac{\pi 8^2\times 12}{4\times 0.8049}[/tex]
[tex]\dot m = 717.309 kg/s[/tex]
the power produced [tex]\dot W = \dot m \frac{ V_1^2 - V_2^2}{2} = 717.3009 [\frac{12^2 - 8^2}{2} \times \frac{1 kJ/kg}{1000 m^2/s^2}][/tex]
[tex]\dot W = 28.6 kW[/tex]