Answer:
A. 5b > 650 + 2.25b; B. 237 brownies
Step-by-step explanation:
A. Set up the inequality
Let b = the number of brownies. Then
Cost = 650 + 2.25b
Sales = 5b
Profit = Sales - Cost
To make a profit, we must have
Sales - Cost > 0 or
5b > 650 + 2.25b
2. Solve the inequality
[tex]\begin{array}{rcl}5b & > & 650 + 2.25b\\2.75b & > & 650\\b & > & \dfrac{650}{2.75}\\\\& > & 236.4\\\end{array}\\\text{Albert can't sell a fraction of a brownie, so b ${data-answer}gt;$ 237}\\\text{Albert must sell at least $\large \boxed{\textbf{237 brownies}}$ to make a profit.}[/tex]
3. Check
[tex]\begin{array}{rcl}5 \times 237 & > & 650 + 2.25 \times 237\\1185 & > & 650 + 533.25\\1185 & > & 1183.25\\\end{array}[/tex]
OK.