The perimeter of a rectangle is 15x + 17 y if the length is 7/2x + 7y then find the width of the rectangle A) 4x + 3/2y B) 8x + 3y C) 8x + 10y D) 4x + 3y

Respuesta :

Answer:

A)   The width of the rectangle is  = 4x + (3/2)y

Step-by-step explanation:

The perimeter of the rectangle = 15x + 17y

The length of the rectangle = [tex]\frac{7}{2}x + 7y[/tex]

Let the width of the rectangle be W.

Now, Perimeter of the Rectangle is 2(L +W)

⇒  2(L +W)  =  15x + 17y

or, 2([tex]\frac{7}{2}x + 7y[/tex]  + W) = 15x + 17y

or,  7x + 14y + 2W  = 15x + 17y

or, 2W = 15x + 17y -( 7x + 14y)

⇒ 2W = 15x + 17y - 7x - 14y = 8x -3y

or, W = [tex]\frac{8x + 3y}{2}  = \frac{8}{2} x + \frac{3}{2} y[/tex]

or, Width of the rectangle  = 4x + (3/2)y

ACCESS MORE