Answer:
A) The width of the rectangle is = 4x + (3/2)y
Step-by-step explanation:
The perimeter of the rectangle = 15x + 17y
The length of the rectangle = [tex]\frac{7}{2}x + 7y[/tex]
Let the width of the rectangle be W.
Now, Perimeter of the Rectangle is 2(L +W)
⇒ 2(L +W) = 15x + 17y
or, 2([tex]\frac{7}{2}x + 7y[/tex] + W) = 15x + 17y
or, 7x + 14y + 2W = 15x + 17y
or, 2W = 15x + 17y -( 7x + 14y)
⇒ 2W = 15x + 17y - 7x - 14y = 8x -3y
or, W = [tex]\frac{8x + 3y}{2} = \frac{8}{2} x + \frac{3}{2} y[/tex]
or, Width of the rectangle = 4x + (3/2)y