If f(x, y, z) = x sin(yz), (a) find the gradient of f and (b) find the directional derivative of f at (2, 4, 0) in the direction of v = i + 3j − k. SOLUTION (a) The gradient of f is ∇f(x, y, z) = fx(x, y, z), fy(x, y, z), fz(x, y, z) = . (b) At (2, 4, 0) we have ∇f(2, 4, 0) = <0,0,8> . The unit vector in the direction of v = i + 3j − k is u = < 1 √11​, 3 √11​,− 1 √11​> . Therefore this equation gives Duf(2, 4, 0) = ∇f(2, 4, 0) · u = 8k · 1 √11​, 3 √11​,− 1 √11​ = − 8 √11​ .

Respuesta :

Answer:

a) [tex]\nabla f(x,y,z) = \sin{yz}\mathbf{i} + xz\cos{yz}\mathbf{j} + xy \cos{yz}\mathbf{k}[/tex].

b) [tex]Du_{f}(2,4,0) = -\frac{8}{\sqrt{11}}[/tex]

Step-by-step explanation:

Given a function [tex]f(x,y,z)[/tex], this function has the following gradient:

[tex]\nabla f(x,y,z) = f_{x}(x,y,z)\mathbf{i} + f_{y}(x,y,z)\mathbf{j} + f_{z}(x,y,z)\mathbf{k}[/tex].

(a) find the gradient of f

We have that [tex]f(x,y,z) = x\sin{yz}[/tex]. So

[tex]f_{x}(x,y,z) = \sin{yz}[/tex]

[tex]f_{y}(x,y,z) = xz\cos{yz}[/tex]

[tex]f_{z}(x,y,z) = xy \cos{yz}[/tex].

[tex]\nabla f(x,y,z) = f_{x}(x,y,z)\mathbf{i} + f_{y}(x,y,z)\mathbf{j} + f_{z}(x,y,z)\mathbf{k}[/tex].

[tex]\nabla f(x,y,z) = \sin{yz}\mathbf{i} + xz\cos{yz}\mathbf{j} + xy \cos{yz}\mathbf{k}[/tex]

(b) find the directional derivative of f at (2, 4, 0) in the direction of v = i + 3j − k.

The directional derivate is the scalar product between the gradient at (2,4,0) and the unit vector of v.

We have that:

[tex]\nabla f(x,y,z) = \sin{yz}\mathbf{i} + xz\cos{yz}\mathbf{j} + xy \cos{yz}\mathbf{k}[/tex]

[tex]\nabla f(2,4,0) = \sin{0}\mathbf{i} + 0\cos{0}\mathbf{j} + 8 \cos{0}\mathbf{k}[/tex].

[tex]\nabla f(2,4,0) = 0i+0j+8k=(0,0,8)[/tex]

The vector is [tex]v = i + 3j - k = (1,3,-1)[/tex]

To use v as an unitary vector, we divide each component of v by the norm of v.

[tex]|v| = \sqrt{1^{2} + 3^{2} + (-1)^{2}} = \sqrt{11}[/tex]

So

[tex]v_{u} = (\frac{1}{\sqrt{11}}, \frac{3}{\sqrt{11}}, \frac{-1}{\sqrt{11}})[/tex]

Now, we can calculate the scalar product that is the directional derivative.

[tex]Du_{f}(2,4,0) = (0,0,8).(\frac{1}{\sqrt{11}}, \frac{3}{\sqrt{11}}, \frac{-1}{\sqrt{11}}) = -\frac{8}{\sqrt{11}}[/tex]

ACCESS MORE