Answer:
a) [tex]\nabla f(x,y,z) = \sin{yz}\mathbf{i} + xz\cos{yz}\mathbf{j} + xy \cos{yz}\mathbf{k}[/tex].
b) [tex]Du_{f}(2,4,0) = -\frac{8}{\sqrt{11}}[/tex]
Step-by-step explanation:
Given a function [tex]f(x,y,z)[/tex], this function has the following gradient:
[tex]\nabla f(x,y,z) = f_{x}(x,y,z)\mathbf{i} + f_{y}(x,y,z)\mathbf{j} + f_{z}(x,y,z)\mathbf{k}[/tex].
(a) find the gradient of f
We have that [tex]f(x,y,z) = x\sin{yz}[/tex]. So
[tex]f_{x}(x,y,z) = \sin{yz}[/tex]
[tex]f_{y}(x,y,z) = xz\cos{yz}[/tex]
[tex]f_{z}(x,y,z) = xy \cos{yz}[/tex].
[tex]\nabla f(x,y,z) = f_{x}(x,y,z)\mathbf{i} + f_{y}(x,y,z)\mathbf{j} + f_{z}(x,y,z)\mathbf{k}[/tex].
[tex]\nabla f(x,y,z) = \sin{yz}\mathbf{i} + xz\cos{yz}\mathbf{j} + xy \cos{yz}\mathbf{k}[/tex]
(b) find the directional derivative of f at (2, 4, 0) in the direction of v = i + 3j − k.
The directional derivate is the scalar product between the gradient at (2,4,0) and the unit vector of v.
We have that:
[tex]\nabla f(x,y,z) = \sin{yz}\mathbf{i} + xz\cos{yz}\mathbf{j} + xy \cos{yz}\mathbf{k}[/tex]
[tex]\nabla f(2,4,0) = \sin{0}\mathbf{i} + 0\cos{0}\mathbf{j} + 8 \cos{0}\mathbf{k}[/tex].
[tex]\nabla f(2,4,0) = 0i+0j+8k=(0,0,8)[/tex]
The vector is [tex]v = i + 3j - k = (1,3,-1)[/tex]
To use v as an unitary vector, we divide each component of v by the norm of v.
[tex]|v| = \sqrt{1^{2} + 3^{2} + (-1)^{2}} = \sqrt{11}[/tex]
So
[tex]v_{u} = (\frac{1}{\sqrt{11}}, \frac{3}{\sqrt{11}}, \frac{-1}{\sqrt{11}})[/tex]
Now, we can calculate the scalar product that is the directional derivative.
[tex]Du_{f}(2,4,0) = (0,0,8).(\frac{1}{\sqrt{11}}, \frac{3}{\sqrt{11}}, \frac{-1}{\sqrt{11}}) = -\frac{8}{\sqrt{11}}[/tex]