Respuesta :

Answer:

B

Step-by-step explanation:

Given linear system of equation [tex]y=\frac{2}{3} x +2[/tex] , [tex]6x-4y =-10[/tex] has exactly one solution.

What is system of equation?

" A system of equation is a finite set of equations for which we find a common solution."

Condition used

Linear system of equations

[tex]a_{1} x + b_{1} + c_{1} =0\\\\a_{2} x + b_{2} + c_{2} =0[/tex]

Condition for exactly one solution

[tex]\frac{a_{1} }{a_{2} } \neq \frac{b_{1} }{b_{2} }[/tex]

According to the question,

Given linear system of equation,

[tex]y=\frac{2}{3} x +2[/tex]

⇒ [tex]2x-3y+6=0[/tex]                                   _____(1)

[tex]6x-4y =-10[/tex]

⇒[tex]6x-4y+10=0[/tex]                                 ______(2)

From (1) and (2) substitute the value in the condition of linear system of equation we get,

   [tex]\frac{a_{1} }{a_{2} } =\frac{2}{6} \\\\\frac{b_{1} }{b_{2} }=\frac{-3}{-4}[/tex]

⇒ [tex]\frac{a_{1} }{a_{2} } \neq \frac{b_{1} }{b_{2} }[/tex]

Hence , linear system of equation [tex]y=\frac{2}{3} x +2[/tex] , [tex]6x-4y =-10[/tex] has exactly one solution.

Learn more about system of equation here

https://brainly.com/question/12895249

#SPJ3

ACCESS MORE
EDU ACCESS
Universidad de Mexico