Answer:
[tex](a)\hspace{3}-79.61mi/h^2[/tex]
[tex](b)\hspace{3}-4.36mi/h^2[/tex]
Step-by-step explanation:
Let's rewrite the equation as:
[tex]A=26.5*(x^{-0.45 })[/tex]
Now, let's find its derivate:
[tex]\frac{dA}{dx} =(-0.45)*(26.5)*x^{-0.45-1} =-11.925*x^{-1.45} =-\frac{11.925}{x^{1.45} }[/tex]
Let's evaluate x=0.27 and x=2:
[tex]\frac{dA}{dx} \left \{ {x=0.27}} \right. =-\frac{11.925}{0.27^{1.45} } =-79.61mi/h^2[/tex]
[tex]\frac{dA}{dx} \left \{ {x=2}} \right. =-\frac{11.925}{2^{1.45} } =-4.36mi/h^2[/tex]
Keep in mind that when we derivate A(average speed) we find the average acceleration, thats why the result is given in mi/h^2, also it explains the minus sign, because for every stop you make on the trip you are decelerating.