Answer
given,
mass of copper rod = 1 kg
horizontal rails = 1 m
Current (I) = 50 A
coefficient of static friction = 0.6
magnetic force acting on a current carrying wire is
F = B i L
Rod is not necessarily vertical
[tex]F_x =i L B_d[/tex]
[tex]F_y= i L B_w[/tex]
the normal reaction N = mg-F y
static friction f = μ_s (mg-F y )
horizontal acceleration is zero
[tex]F_x-f = 0[/tex]
[tex]iLBd = \mu_s(mg-F_y )[/tex]
B_w = B sinθ
B_d = B cosθ
iLB cosθ= μ_s (mg- iLB sinθ)
[tex]B = \dfrac{\mu_smg}{i(cos\theta +\mu_s sin\theta)}[/tex]
[tex]\theta =tan{-1}{\mu_s}[/tex]
[tex]\theta =tan{-1}{0.6}[/tex]
[tex]\theta = 31^0[/tex]
[tex]B = \dfrac{0.6\times 1 \times 9.8}{50(cos31^0 +0.6 sin31^0)}[/tex]
B = 0.1 T