Respuesta :

Answer:

[tex]16x^{6} +56x^{3}y^{3} z^{4} +49y^{6} z^{8} \\[/tex]

Step-by-step explanation:

To solve this type of problems first need to review some laws of exponents:

When you are multiplying the same base, you need to add the exponents.

[tex]x^{2} +x^{8}  = x^{2+8}  = x^{10}[/tex]

When you are raising a base with power to another power, you should keep the base and multiply the exponents:

[tex](x^{2} y^{5})^3 = x^{2*3} y^{5*3} = x^{6} y^{15}[/tex]

Now for the expression [tex](4x^{3} + 7y^{3} z^{4} )^2[/tex]

Write the multiplying factors:

[tex](4x^{3} + 7y^{3} z^{4} )(4x^{3} + 7y^{3} z^{4} )[/tex]

Multiply the term [tex]4x^{3}[/tex]

[tex](4x^{3} + 7y^{3} z^{4} )(4x^{3} + 7y^{3} z^{4} ) = 16x^{3+3} + 28x^3y^{3} z^{4}[/tex]

Then multiply the term [tex]7y^{3}z^{4}[/tex]

[tex](4x^{3} + 7y^{3} z^{4} )(4x^{3} + 7y^{3} z^{4} ) = 16x^{3+3} + 28x^3y^{3} z^{4}\\\\+ 28x^3y^{3} z^{4} + 49y^{3+3} z^{4+4}[/tex]

Simplify the exponents:

[tex](4x^{3} + 7y^{3} z^{4} )(4x^{3} + 7y^{3} z^{4} ) = 16x^{6} + 28x^3y^{3} z^{4}\\\\+ 28x^3y^{3} z^{4} + 49y^{6} z^{8}[/tex]

Add like terms:

[tex]= 16x^{6} + 56x^3y^{3} z^{4} + 49y^{6} z^{8}[/tex]

ACCESS MORE