Answer: a. 23 b. 62 c. 139
Step-by-step explanation:
Formula for sample size :-
[tex]n=(\dfrac{z_{\alpha/2}\cdot \sigma}{E})^2[/tex]
Given : [tex]\sigma=0.24[/tex]
Critical value of 95% confidence : [tex]z_{\alpha/2}=1.96[/tex]
a. For E = 0.10
Now, the required sample size will be :-
[tex]n=(\dfrac{1.96\cdot 0.24}{0.10})^2\\\\=22.127616\approx23[/tex]
Hence, The appropriate sample size is = 23.
b. For E = 0.06
Now, the required sample size will be :-
[tex]n=(\dfrac{1.96\cdot 0.24}{0.06})^2\\\\=61.4656\approx62[/tex]
Hence, The appropriate sample size is = 62.
b. For E = 0.04
Now, the required sample size will be :-
[tex]n=(\dfrac{1.96\cdot 0.24}{0.04})^2\\\\=61.4656\approx62[/tex]
Hence, The appropriate sample size is = 139.