Answer:
[tex]x=90^0\:,y=43^0[/tex]
Step-by-step explanation:
1) This an Isosceles triangle then there are two congruent sides and two congruent angles:
[tex]\angle B\cong \angle C= 47^{0}[/tex]
2) The Sum of Internal Angles are equal to 180º then:
[tex]2y+47^0+47^0=180^0\Rightarrow 2y=180^0-94^0\Rightarrow 2y=86^0\Rightarrow y=43^0[/tex]
3) According to the figure [tex]\overline{AD}[/tex] bisects the ∠A then, by definition it is a perpendicular line, so x=90º and ∠D = 90º since it is its supplementary angle.
4) Proof
[tex]\bigtriangleup ABD\Rightarrow \angle A+\angle B+\angle C=180\Rightarrow 43+47+90=180\Rightarrow 180=180 \: True[/tex]
[tex]\bigtriangleup ADC\Rightarrow \angle A+\angle D+\angle C=180\Rightarrow 43+90+47=180\Rightarrow 180=180 \: True[/tex]