Question 6 The mineral barite, (BaSO.) has a ke of 1.1 x 10" at 25°C. Calculate the solubility of barium sulfate in water, in: 6.1. moles per liter 6.2. grams per liter

Respuesta :

Explanation:

(6.1).    The reaction equation will be as follows.

             [tex]BaSO_{4}(s) \rightleftharpoons Ba^{2+}(aq) + SO^{2-}_{4}(aq)[/tex]

Assuming the value of [tex]K_{sp}[/tex] as [tex]1.1 \times 10^{-10}[/tex] and let the solubility of each specie involved in this reaction is "s". The expression for [tex]K_{sp}[/tex] will be as follows.

            [tex]K_{sp} = [Ba^{2+}][SO^{-}_{2}][/tex]    (Solids are nor considered)

                        = [tex]s \times s[/tex]

                   s = [tex]\sqrt{K_{sp}}[/tex]

                      = [tex]\sqrt{1.1 \times 10^{-10}}[/tex]

                      = [tex]1.05 \times 10^{-5}[/tex]

Therefore, solubility of barium sulfate in water is [tex]1.05 \times 10^{-5}[/tex].

(6.2).   As the molar mass of [tex]BaSO_{4}[/tex] is 233.38 g/mol

Therefore, the solubility is g/L will be calculated as follows.

                [tex]233.38 g/mol \times 1.05 \times 10^{-5}[/tex]

                  = [tex]2.45 \times 10^{-3} g/L[/tex]

Therefore, solubility of barium sulfate in grams per liter is [tex]2.45 \times 10^{-3} g/L[/tex].

ACCESS MORE