Answer:
The magnitude of the applied force is 94.74 N
Explanation:
Mass of the block, m = 11 kg
Angle of inclination of the plane, [tex]\theta = 30^{\circ}[/tex]
Friction coefficient, [tex]\mu_{k} = 0.2[/tex]
Now,
Normal force that acts on the block is given by:
[tex]F_{N} = mgcos\theta + Fsin\theta[/tex] (1)
Now, to maintain the equilibrium parallel to ramp the forces must be balanced.
Thus
[tex]Fcos\theta = \mu_{k}F_{N}[/tex] (2)
From eqn (1) and (2)
[tex]Fcos\theta = \mu_{k}(mgcos\theta + Fsin\theta)[/tex]
[tex]F(cos\theta - \mu_{k}sin\theta) = \mu_{k}mgcos\theta[/tex]
[tex]F = \frac{\mu_{k}mgcos\theta}{cos\theta - \mu_{k}sin\theta}[/tex]
[tex]F = \frac{0.2\times 11\times 9.8cos30^{\circ}}{cos30^{\circ} - 0.2\times sin30^{\circ}}[/tex]
F = 94.74 N