Respuesta :
Answer:
The magnitude of the electric field and direction of electric field are [tex]146.03\times10^{3}\ N/C[/tex] and 75.36°.
Explanation:
Given that,
First charge [tex]q_{1}= 2.9\mu C[/tex]
Second charge[tex]q_{2}= 2.9\mu C[/tex]
Distance between two corners r= 50 cm
We need to calculate the electric field due to other charges at one corner
For E₁
Using formula of electric field
[tex]E_{1}=\dfrac{kq}{r'^2}[/tex]
Put the value into the formula
[tex]E_{1}=\dfrac{9\times10^{9}\times2.9\times10^{-6}}{(50\sqrt{2}\times10^{-2})^2}[/tex]
[tex]E_{1}=52200=52.2\times10^{3}\ N/C[/tex]
For E₂,
Using formula of electric field
[tex]E_{1}=\dfrac{kq}{r^2}[/tex]
Put the value into the formula
[tex]E_{2}=\dfrac{9\times10^{9}\times2.9\times10^{-6}}{(50\times10^{-2})^2}[/tex]
[tex]E_{2}=104400=104.4\times10^{3}\ N/C[/tex]
We need to calculate the horizontal electric field
[tex]E_{x}=E_{1}\cos\theta[/tex]
[tex]E_{x}=52.2\times10^{3}\times\cos45[/tex]
[tex]E_{x}=36910.97=36.9\times10^{3}\ N/C[/tex]
We need to calculate the vertical electric field
[tex]E_{y}=E_{2}+E_{1}\sin\theta[/tex]
[tex]E_{y}=104.4\times10^{3}+52.2\times10^{3}\sin45[/tex]
[tex]E_{y}=141310.97=141.3\times10^{3}\ N/C[/tex]
We need to calculate the net electric field
[tex]E_{net}=\sqrt{E_{x}^2+E_{y}^2}[/tex]
Put the value into the formula
[tex]E_{net}=\sqrt{(36.9\times10^{3})^2+(141.3\times10^{3})^2}[/tex]
[tex]E_{net}=146038.69\ N/C[/tex]
[tex]E_{net}=146.03\times10^{3}\ N/C[/tex]
We need to calculate the direction of electric field
Using formula of direction
[tex]\tan\theta=\dfrac{141.3\times10^{3}}{36.9\times10^{3}}[/tex]
[tex]\theta=\tan^{-1}(\dfrac{141.3\times10^{3}}{36.9\times10^{3}})[/tex]
[tex]\theta=75.36^{\circ}[/tex]
Hence, The magnitude of the electric field and direction of electric field are [tex]146.03\times10^{3}\ N/C[/tex] and 75.36°.
