Answer:
n=1.53
T₂ = 166.16 °C
Explanation:
Given that
P₁=0.85 bar
V₁= 0.25 m³
P₂=2.8 bar
V₂=0.115 m³
Lets take compression index is n
So
[tex]PV^n=C[/tex]
[tex]P_1V^n_1=P_2V^n_2[/tex]
Now by putting the values
[tex]\dfrac{P_1}{P_2}=\left(\dfrac{V_2}{V_1}\right)^n[/tex]
[tex]P_1V^n_1=P_2V^n_2[/tex]
[tex]0.85\times 0.25^n=2.8\times 0.115^n[/tex]
[tex]\dfrac{2.8}{0.85}=\left(\dfrac{0.25}{0.115}\right)^n[/tex]
[tex]3.29=2.17^n[/tex]
ln 3.29 = n ln 2.17
n=1.53
T₁=18°C=273+ 18 = 291 K
Lets final temperature =T₂
[tex]T_1V_1^{n-1}=T_2V_2^{n-1}[/tex]
[tex]291\times 0.25^{1.53-1}=T_2\times 0.115^{1.53-1}[/tex]
T₂=439.16 K
T₂ = 166.16 °C