Answer:
The output produce is 4.
Step-by-step explanation:
Given : A profit -maximizing firm has the total-cost function [tex]c= x^2+2x[/tex] and sells into a competitive market on which the price is $10.
To find : What output should it produce?
Solution :
The total-cost function [tex]C(x)= x^2+2x[/tex]
The revenue function is price into number of item,
So, The revenue function is [tex]R(x)=10x[/tex]
The profit function is given by,
[tex]P(x)=R(x)-C(x)[/tex]
[tex]P(x)=10x-(x^2+2x)[/tex]
[tex]P(x)=10x-x^2-2x[/tex]
[tex]P(x)=8x-x^2[/tex]
The derivative of the profit function,
[tex]P'(x)=8-2x[/tex]
Equate it to zero to get output,
[tex]8-2x=0[/tex]
[tex]2x=8[/tex]
[tex]x=4[/tex]
For maxima/minima we find the second derivative,
[tex]P''(x)=-2[/tex]
As [tex]c''(x)<0[/tex] it is a local maxima.
Therefore, The output produce is 4.