Answer:
Average velocity [tex]v_{p} = 1.515 \frac{m}{s}[/tex]
Step-by-step explanation:
The information during the motion
[tex]t_{1}=15 s[/tex]
[tex]t_{2}=35 s[/tex]
[tex]x_{1}=27.5 m[/tex]
[tex]x_{2}=42.5 m[/tex]
So the velocity in each motion is:
[tex]v_{1}=\frac{x_{1} }{t_{1}}\\ v_{1}=\frac{27.5m }{15 s}\\v_{1}=1.83 \frac{m}{s} \\[/tex]
[tex]v_{2}=\frac{x_{2} }{t_{2}}\\ v_{2}=\frac{42.5 m }{35 s}\\v_{1}=1.2 \frac{m}{s} \\[/tex]
Velocity average:
[tex]v_{p}=\frac{v_{1}+v_{2}}{2} = \frac{1.83\frac{m}{s}+ 1.2\frac{m}{s}}{2} \\v_{p}= \frac{3.03(\frac{m}{s} )}{2} \\v_{p}= 1.515 \frac{m}{s}[/tex]