Respuesta :

Answer:

y(t) =[tex]-34+10 t + 17 e^{-t} Sin(2 t) + 30 e^{-t} Cos(2 t)[/tex]

Step-by-step explanation:

We use the Laplace transform in the function y''(t) +2y'(t)+ 5y(t) =50t-150

ℒ{ y''(t) +2y'(t)+ 5y(t)} =ℒ{50t-150}

ℒ{ y''(t)} +2ℒ{y'(t)}+ 5ℒ{y(t)} =ℒ{50t-ℒ{150}

s²·Y(s)-s·y(0)-y'(0)+2s·Y(s)-2·y(0)+5·Y(s)=[tex]\frac{50}{s^2}-\frac{150}{s}[/tex]

s²·Y(s)-s·(-4)-(14)+2s·Y(s)-2·(-4)+5·Y(s)=[tex]\frac{50}{s^2}-\frac{150}{s}[/tex]

Y(s)·(s²+2s+5)+4s-14+8=[tex]\frac{50}{s^2}-\frac{150}{s}[/tex]

Y(s)·(s²+2s+5)=[tex]\frac{50}{s^2}-\frac{150}{s}[/tex]-4s+6

Y(s)·(s²+2s+5)=[tex]\frac{50-150s-4s^3+6s^2}{s^2}[/tex]

Y(s)=[tex]\frac{50-150s-4s^3+6s^2}{s^2(s^2+2s+5)}[/tex]

The new function can also be expressed as partials fractions:

Y(s)=[tex]\frac{50-150s-4s^3+6s^2}{s^2(s^2+2s+5)}[/tex]=[tex]\frac{A}{s}+\frac{B}{s}+\frac{Cs+D}{s^2+2s+5}[/tex]

Hence,

[tex]50-150s-4s^3+6s^2=[tex(]\frac{A}{s}+\frac{B}{s^2}+\frac{Cs+D}{s^2+2s+5}[/tex])×[s^2(s^2+2s+5)]

50-150s+6s²-4s³=(A+C)s³+(2A+B+D)s²+(5A+2B)s+(5B)

A+C=-4 ⇒ C=-4+34=30

2A+B+D=6 ⇒ D=64

5A+2B=-150 ⇒ A=-34

5B=50 ⇒ B=10

The function Y(s) is:

Y(s)=[tex]\frac{-34}{s}+\frac{10}{s^2}+\frac{30s+64}{s^2+2s+5}[/tex]

30s+64 can be expressed as:

30s+64= 30(s+1)+34

s²+2s+5 can be expressed as:

s²+2s+5=(s²+2s+1)-1+5=(s+1)²+4

Then:

Y(s)=[tex]\frac{-34}{s}+\frac{10}{s^2}+\frac{30(s+1)}{(s+1)^2+2^2}+\frac{17*2}{(s+1)^2+2^2}[/tex]

We use the inverse Laplace transform and find the transformation in the table:

ℒ⁻¹{Y(s}=ℒ⁻¹{[tex]\frac{-34}{s}+\frac{10}{s^2}+\frac{30(s+1)}{(s+1)^2+2^2}+\frac{17*2}{(s+1)^2+2^2}[/tex]}

y(t)=[tex] - 34 + 10 t + 17 e^{-t} Sin(2 t) + 30 e^{-t} Cos(2 t)[/tex]

ACCESS MORE