Answer:
0.00366 m
Step-by-step explanation:
We are given that
Length of wire=2.4 m
Diameter of wire=0.004 m
Radius of wire=[tex]\frac{d}{2}=\frac{0.004}{2}=0.002 m[/tex]
Resistance of wire=150 ohm
We know that
Area of wire=[tex]\pi r^2[/tex]
Resistance=[tex]\rho\frac{L}{A^2}[/tex]
Substitute the values in the formula
[tex]150=\rho\frac{2.4}{(3.14(0.002)^2}[/tex]
[tex]\rho=\frac{150\times 3.14(0.002)^2}{2.4}[/tex]
[tex]rho=7.85\times 10^{-4} ohm-m[/tex]
Length of another wire=1.2 m
Resistance of wire=90 ohm
When wires are similar then resistivityremain same.
Therefore, resistivity of another wire=[tex]7.85\times 10^{-4} ohm -m[/tex]
Substitute the values in the formula
[tex]90=7.85\times 10^{-4}\times\frac{1.2}{3.14 r^2}[/tex]
[tex]r=\sqrt{\frac{7.85\times 10^{-4}\times 1.2}{3.14\times 90}}=0.183\times 10^{-2}=1.83\times 10^{-3} m[/tex]
Diameter of wire=[tex]2r=2\times 1.83\times 10^{-3}=3.66\times 10^{-3}=0.00366 m[/tex]