Answer: Reject the null hypothesis.
Step-by-step explanation: As per given , we have
[tex]H_0: \mu\leq125000[/tex]
[tex]H_a: \mu>125000[/tex] ,Since [tex]H_a[/tex] is right=-tailed , so the test is right -tailed test.
Sample size : n= 32 > 30 , so we use z-test.
[tex]\overline{x}=130,000[/tex]
[tex]s=12,500[/tex]
Test statistic : [tex]z=\dfrac{\overline{x}-\mu}{\dfrac{s}{\sqrt{n}}}[/tex]
i.e. [tex]z=\dfrac{130000-125000}{\dfrac{12500}{\sqrt{32}}}[/tex]
[tex]=2.2627416998\approx2.26[/tex]
Using standard z-value table for right tailed test , we have
P-value=[tex]P(z>2.26)=0.0119106[/tex]
Since , the p-value (0.0119106) is less than significance level , so we reject the null hypothesis.
We conclude that there is sufficient evidence to reject the advertising claim.