Answer:
Option B. is the 2nd pic (Train 2)
Step-by-step explanation:
Let
x ----> the time in seconds
y ----> the distance in centimeters
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form [tex]y/x=k[/tex] or [tex]y=kx[/tex]
In a proportional relationship the constant of proportionality k is equal to the slope m of the line and the line passes through the origin
Verify each table
Train 1
Find the value of k
[tex]k=y/x[/tex]
For x=5, y=10 ----> [tex]k=10/5=2[/tex]
For x=10, y=15 ----> [tex]k=15/10=1.5[/tex]
For x=20, y=20 ----> [tex]k=20/20=1[/tex]
The values of k are different
therefore
The numbers in the table not form a proportional relationship
Train 2
Find the value of k
[tex]k=y/x[/tex]
For x=5, y=20 ----> [tex]k=20/5=4[/tex]
For x=10, y=40 ----> [tex]k=40/10=4[/tex]
For x=20, y=80 ----> [tex]k=80/20=4[/tex]
The values of k are the same
therefore
The numbers in the table form a proportional relationship
Train 3
Find the value of k
[tex]k=y/x[/tex]
For x=5, y=10 ----> [tex]k=10/5=2[/tex]
For x=10, y=15 ----> [tex]k=15/10=1.5[/tex]
For x=20, y=30 ----> [tex]k=30/20=1.5[/tex]
The values of k are different
therefore
The numbers in the table not form a proportional relationship
Train 4
Find the value of k
[tex]k=y/x[/tex]
For x=5, y=20 ----> [tex]k=20/5=4[/tex]
For x=10, y=25 ----> [tex]k=25/10=2.5[/tex]
For x=20, y=30 ----> [tex]k=30/20=1.5[/tex]
The values of k are different
therefore
The numbers in the table not form a proportional relationship