[tex]\begin{vmatrix}4&2&3\\0&4&0\\3&8&3\end{vmatrix}[/tex]
The second row is the best candidate for cofactor expansion since 2 of the 3 entries are 0. The determinant is then equal to
[tex]0\begin{vmatrix}2&3\\8&3\end{vmatrix}-4\begin{vmatrix}4&3\\3&3\end{vmatrix}+0\begin{vmatrix}4&2\\3&8\end{vmatrix}=-4\begin{vmatrix}4&3\\3&3\end{vmatrix}=-4(12-9)=\boxed{-12}[/tex]