Respuesta :

Answer:

[tex](10111110110110000000000000000000)_2=(3201826816)_{10}[/tex]    

Step-by-step explanation:

To find : Write is the base 10 number representation in 32-bit single-precision binary format (single) by 10111110110110000000000000000000 ?

Solution :

Converting binary format into base 10 is multiplying the digit by 2 to the place value value of digit.

Binary number is 10111110110110000000000000000000.

Converting into base 10,

[tex]=1\times 2^{31}+0\times 2^{30}+1\times 2^{29}+1\times 2^{28}+1\times 2^{27}+1\times 2^{26}+1\times 2^{25}+0\times 2^{24}+1\times 2^{23}+1\times 2^{22}+0\times 2^{21}+1\times 2^{20}+1\times 2^{19}+0\times 2^{18}+0\times 2^{17}+0\times 2^{16}+0\times 2^{15}+0\times 2^{14}+0\times 2^{13}+0\times 2^{12}+0\times 2^{11}+0\times 2^{10}+0\times 2^{9}+0\times 2^{8}+0\times 2^{7}+0\times 2^{6}+0\times 2^{5}+0\times 2^{4}+0\times 2^{3}+0\times 2^{2}+0\times 2^{1}+0\times 2^{0}[/tex]

[tex]=2147483648+0+536870912+268435456+134217728+67108864+33554432+0+8388608+4194304+0+1048576+524288+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0[/tex]

[tex]=3201826816[/tex]

Therefore, [tex](10111110110110000000000000000000)_2=(3201826816)_{10}[/tex]

ACCESS MORE