Respuesta :
Answer:
μ =2.23
[tex]\sigma_x^2= 1.49[/tex]
[tex]\sigma_x=1.22[/tex]
Step-by-step explanation:
Radio(x) weeks P(x)
0 5 5/100 = 0.05
1 27 27/100=0.27
2 27 27/100 = 0.27
3 27 27/100 = 0.27
4 9 9/100=0.09
5 5 5/100=0.05
We know that
Mean ,μ
[tex]\mu =\sum x.P(x)[/tex]
μ = 0 x 0.05 + 1 x 0.27 + 2 x 0.27 + 3 x 0.27 + 4 x 0 .09 + 5 x 0.05
μ =2.23
[tex]\sigma_x^2= \sum x^2\times P(x)-(\sum x.P(x))^2[/tex]
[tex]\sigma_x^2= 0^2\times 0.05+ 1^2\times 0.27+ 2^2\times 0.27+ 3^2\times 0.27+ 4^2\times 0.09+5^2\times 0.05-2.23^2[/tex]
[tex]\sigma_x^2= 1.49[/tex]
[tex]\sigma_x= \sqrt{\sigma_x^2}[/tex]
[tex]\sigma_x=1.22[/tex]
The mean, variance and standard deviation of the distribution are 2.23, 1.50 and 1.22 respectively.
Total number of weeks = 100
Weeks with no radio sold, x = 0 :
- P(x) = 5/100 = 0.05
Weeks with one radio sold, x = 1 :
- P(x) = 27/100 = 0.27
Weeks with two radio sold, x = 2 :
- P(x) = 27/100 = 0.27
Weeks with three radio sold, x = 3 :
- P(x) = 27/100 = 0.27
Weeks with four radio sold, x = 4 :
- P(x) = 9/100 = 0.09
Weeks with five radio sold, x = 5 :
- P(x) = 5/100 = 0.05
The probability distribution :
X ____ 0 ____ 1 ____ 2 ____ 3 _____ 4 __ 5
P(X) _ 0.05 _ 0.27 _ 0.27 _ 0.27 __ 0.09 _ 0.05
The mean :
Mean, μ = Σ P(X)X
μ = (0×0.05) + (1×0.27 + (2×0.27) + (3×0.27) + (4×0.09) + (5×0.05) = 2.23
The Variance, σ² :
σ² = Σ( X² × p(x)) - μ²
σ² = [(0²×0.05) + (1²×0.27 + (2²×0.27) + (3²×0.27) + (4²×0.09) + (5²×0.05) - 2.23²]
σ² = 6.47 - 4.9729 = 1.4971
σ² = 1.50
The standard deviation, σ :
σ = √σ²
σ = √1.4971
σ = 1.22
Learn more :https://brainly.com/question/12474772