Answer:
The population after 15 years will be [tex]694,835\ people[/tex]
Step-by-step explanation:
In this problem we have a exponential function of the form
[tex]f(x)=a(b^{x})[/tex]
where
a is the initial value
b is the base
r is the rate
b=(1+r)
x ----> the number of years
f(x) ----> the population
we have
[tex]a=400,000\ people[/tex]
[tex]r=3.75\%=3.75/100=0.0375[/tex]
[tex]b=1+r=1+0.0375=1.0375[/tex]
The equation is
[tex]f(x)=400,000(1.0375^{x})[/tex]
For x=15 years
substitute the value of x
[tex]f(x)=400,000(1.0375^{15})[/tex]
[tex]f(x)=694,835\ people[/tex]
therefore
The population after 15 years will be [tex]694,835\ people[/tex]