Answer:
(5, 12, 13) are the set of numbers that could represent the length of a right triangle.
Step-by-step explanation:
In any right angle triangle sum of square of the largest side is equal to the sum of square of the other two sides.
Using pythagoras:
[tex](Hypotenuse)^{2} = Base^{2} + Altitude^{2}[/tex]
where largest side is the hypotenuse.
Case 1: [tex](10)^{2} \neq (5)^{2} + (5)^{2}[/tex]
∵ 100 ≠ 50
Case 2: [tex](6)^{2} \neq (4)^{2} + (5)^{2}[/tex]
36 ≠ 16 + 25
36 ≠ 41
Case 3: [tex](13)^{2} = (5)^{2} + (12)^{2}[/tex]
169 = 25 + 144
169 = 169
Since [tex](Hypotenuse)^{2} = Base^{2} + Altitude^{2} = 169[/tex], ∴ option C is the correct answer. So, (5, 12, 13) are the set of numbers that could represent the length of a right triangle.
Case 4: [tex](10)^{2} \neq (7)^{2} + (8)^{2}[/tex]
100 ≠ 49 + 64
100 ≠ 103