Answer:
[tex]\frac{4}{5}R[/tex]
Explanation:
Using the law of conservation of energy for both cases, when the proton is at distance R from the nucleus with a final velocity equal to [tex]\frac{1}{2}v_0[/tex] and when the proton is at distance R' from the nucleus with a final velocity equal to [tex]\frac{1}{4}v_0[/tex]. Recall that initially the two particles are very far apart, so there is no initial potential energy. For the first case, we have:
[tex]\Delta K=\Delta U\\K_{f}-K_{i}=U_{f}-U_{i}\\\frac{1}{2}m(v_{f})^2-\frac{1}{2}m(v_{0})^2=\frac{ke(Ze)}{R}-0\\\frac{1}{2}m(\frac{1}{2}v_{0})^2-\frac{1}{2}m(v_{0})^2=\frac{kZe^2}{R}\\\frac{1}{2}m\frac{1}{4}(v_{0})^2-\frac{1}{2}m(v_{0})^2=\frac{kZe^2}{R'}\\\frac{1}{8}m(v_{0})^2-\frac{1}{2}m(v_{0})^2=\frac{kZe^2}{R'}\\-\frac{3}{8}m(v_{0})^2=\frac{kZe^2}{R}(1)\\[/tex]
In the same way, for the second case, we have:
[tex]\frac{1}{2}m(\frac{1}{4}v_{0})^2-\frac{1}{2}m(v_{0})^2=\frac{ke(Ze)}{R'}\\\frac{1}{2}m\frac{1}{16}(v_{0})^2-\frac{1}{2}m(v_{0})^2=\frac{kZe^2}{R'}\\\frac{1}{32}m(v_{0})^2-\frac{1}{2}m(v_{0})^2=\frac{kZe^2}{R'}\\-\frac{15}{32}m(v_{0})^2=\frac{kZe^2}{R'}(2)\\[/tex]
Finally, dividing (2) in (1):
[tex]\frac{-\frac{15}{32}m(v_{0})^2}{-\frac{3}{8}m(v_{0})^2}=\frac{\frac{kZe^2}{R'}}{\frac{kZe^2}{R}}\\\\\frac{\frac{15}{32}}{\frac{3}{8}}=\frac{R}{R'}\\R'(\frac{120}{96})=R\\R'(\frac{5}{4})=R\\R'=\frac{4}{5}R[/tex]