Answer:
[tex]R_2=6.33cm[/tex]
Explanation:
The equation for the magnetic field at the center of a circular loop is:
[tex]B=\frac{\mu_0I}{2R}[/tex]
If we name the smaller loop as 1 and the bigger loop as 2 and we impose the same magnitude of the magnetic field at their center, we have:
[tex]B_2=B_1[/tex]
[tex]\frac{\mu_0I_2}{2R_2}=\frac{\mu_0I_1}{2R_1}[/tex]
[tex]\frac{I_2}{R_2}=\frac{I_1}{R_1}[/tex]
[tex]R_2=\frac{I_2}{I_1}R_1[/tex]
Which for our values means:
[tex]R_2=\frac{I_2}{I_1}R_1=\frac{(20A)}{(12A)}(3.8cm)=6.33cm[/tex]
(Notice that we don't need to convert cm to m, we get our result in cm).